Un problème important que l'on rencontre en analyse numérique et en mathématiques appliquées concerne l'approximation de fonctions connues seulement par certaines informations. L'interpolation et l'approximation sont deux techniques qui permettent de représenter par une fonction simple, mais de manière approchée, une fonction inconnue dont on connaît soit les valeurs en un certain nombre de points, soit une autre information comme le début de son développement en série de Taylor. La plus simple des fonctions à utiliser pour cela est, bien entendu, un polynôme. Mais un polynôme ne sera pas toujours capable de représenter convenablement, par exemple, des points provenant d'une exponentielle sur un grand intervalle ou d'une fonction admettant des pôles. C'est pour de telles raisons que l'on se tourne alors vers les fractions rationnelles.
Considérons un second problème souvent rencontré. De nombreuses méthodes utilisées en analyse numérique et, plus généralement, en mathématiques appliquées sont des méthodes itératives. Elles produisent une suite qui, dans les meilleurs cas, converge rapidement vers la solution du problème considéré. D'autres méthodes fournissent une approximation de la solution qui dépend d'un paramètre et, lorsque ce paramètre tend vers une limite (en général zéro ou l'infini), cette approximation tend vers la solution exacte du problème. En considérant une suite de ces paramètres convergeant vers leur limite, on obtient une suite d'approximations de la solution qui converge vers la réponse désirée. Cependant, dans ces deux cas, la convergence peut être lente, rendant la méthode difficilement utilisable en pratique. D'autre part, il se peut que la suite (ou l'approximation) provienne d'une boîte noire et qu'il soit donc impossible de modifier son processus de fabrication. L'idée est alors de transformer cette suite lente en une nouvelle suite convergeant, sous certaines conditions, plus rapidement vers la même limite. De telles méthodes sont basées sur l'idée d'extrapolation linéaire ou, mieux, rationnelle.
Le but de cet article est de servir d'introduction à l'interpolation et à l'approximation par des fonctions rationnelles ainsi qu'à l'extrapolation rationnelle. On donnera des exemples d'application de ces techniques.
Dans la bibliographie, les références en français ont été privilégiées quand cela était possible. On pourra trouver d'autres références en consultant les pages personnelles des auteurs de cet article sur Internet.