La croissance de l’Internet se mesure en particulier par le nombre de routes IP qui permettent d’accéder à n’importe quelle machine connectée au réseau. Les routes IPv4 représentent ainsi plusieurs centaines de milliers d’entrées (en 2016) dans les tables maintenues par les routeurs du cœur de l’Internet, ceux-là mêmes qui disposent en permanence d’une vision globale de la topologie du réseau et de l’ensemble des routes qui le parcourent. De même, les routes IPv6 représentent plusieurs dizaines de milliers d’entrées (en 2016) dans les tables maintenues par les routeurs du cœur de l’Internet et gageons que ce nombre ne cessera de croître durant les décennies à venir, au fur et à mesure de l’adoption systématique du protocole IPv6 comme moyen de communication privilégié pour les machines connectées à l’Internet, et notamment celles qui composent l’Internet des objets, estimées à plusieurs milliards d’ici à 2020.
De toute évidence, la croissance des tables de routage a un impact significatif sur l’efficacité d’acheminement du trafic au sein de l’Internet : le principe fondateur du « longest match » sur lequel reposent les décisions d’acheminement de paquets IP prises par les routeurs impose à ceux-ci une consultation systématique de l’ensemble des entrées consignées dans leurs tables de routage afin d’identifier la route la plus spécifique qui leur permet de déterminer l’interface de sortie au travers de laquelle les paquets à destination d’un réseau donné seront transmis.
Plus il y a d’entrées dans la table, plus la décision d’acheminement des paquets prendra de temps.
Malgré les tentatives consistant à oblitérer la notion de classes d’adresses IPv4 pour optimiser l’efficacité d’agrégation des préfixes lorsque ceux-ci doivent être annoncés par les routeurs de l’Internet (technique « Classless Inter-Domain Routing », telle que spécifiée dans le RFC 1584) ou celles consistant à faciliter la capacité d’agrégation de préfixes par un formalisme d’adressage foncièrement hiérarchique [tel qu’introduit par la typologie originelle des adresses IPv6 en TLA (Top Level Aggregator), NLA (Network Level Aggregator) et SLA (Site Level Aggregator)], force est de constater que les longueurs moyennes des préfixes IPv4 et IPv6 échangés entre routeurs de l’Internet ne sont pas de nature à maîtriser la croissance des tables de routage maintenues par les routeurs appartenant à la « Default Free Zone », aussi appelée DFZ, cette région de l’Internet composée de routeurs qui maintiennent l’intégralité des routes disponibles et sont donc exempts de routes par défaut.
Le protocole LISP (Locator/ID Separation Protocol) est une tentative récente, spécifiée par l’IETF (Internet Engineering Task Force) pour répondre à ce besoin de maîtriser la croissance des tables de routage maintenues par les routeurs de la DFZ. Ce protocole fait partie d’une famille d’initiatives qui a pour objectif d’améliorer de manière significative l’efficacité de l’acheminement du trafic dans l’Internet selon le principe fondateur qui consiste à séparer l’information caractéristique de l’identité du terminal de celle caractéristique de l’endroit du réseau auquel ce terminal est connecté. Le protocole LISP adopte ainsi un schéma de type « map’n encap », c’est-à-dire un schéma d’acheminement qui repose d’abord sur un mécanisme de résolution d’adresses comparable au système de résolution de noms DNS (Domain Name System), et qui permet de localiser le site de destination des paquets. LISP procède ensuite à l’encapsulation du trafic qui sera ainsi acheminé jusqu’au routeur directement connecté au réseau hébergeant la destination finale du trafic.
En séparant l’information relative à l’identité du terminal de l’information relative à l’endroit où le terminal est connecté, LISP permet de réduire le nombre de routes qui doivent être maintenues par les routeurs de la DFZ. De plus, LISP n’impose aucune mise à jour des terminaux.
Le système de résolution qui est au cœur de la machinerie LISP est de nature à générer un trafic de signalisation important, selon la fiabilité et la fraîcheur des informations maintenues par un système de résolution qui sera typiquement placé sous la responsabilité de gestion d’une seule entité administrative. Bien que fonctionnellement comparable à un système de résolution DNS, le système de résolution LISP n’est pas déployé à l’échelle de l’Internet et soulève en particulier des problèmes de cohérence de routage dans un contexte interdomaines. Un tel environnement suppose d’ailleurs une nécessaire coordination entre les différents systèmes de résolution susceptibles d’être déployés par les opérateurs de réseaux LISP (voire des tiers). Dans le cas contraire, le déploiement de LISP pourrait provoquer une fragmentation de l’Internet au risque de fortement pénaliser le niveau de qualité associé aux services de connectivité LISP.
Cet article détaille la machinerie protocolaire LISP. Il en fournit également une analyse critique et explore les perspectives d’évolution du protocole de nature à faciliter son adoption à l’échelle de l’Internet.