Au service études et développement, l'ingénieur en génie mécanique conçoit l'architecture d'ensemble d'un produit industriel, choisit les options techniques et procède à des simulations numériques et expérimentales pour soumettre les matériaux, les pièces et les structures à différents types de chargements. Comme l’expérience est souvent considérée comme le meilleur maître (usus magister est optimus), l’analyse expérimentale offre un moyen commode pour comprendre, identifier et dégager les principales thématiques du génie industriel, et apporter des solutions aux problèmes mécaniques rencontrés dans le respect du développement durable.
Ce mode opératoire nécessite des bases physiques claires et cohérentes pour une validation réaliste des modèles mathématiques ou numériques du problème. Celles-ci s’obtiennent à partir de la détection, l’identification et l'analyse des problèmes concrets liés aux processus irréversibles et dissipatifs, responsables du vieillissement, de l'endommagement, de la dégradation, de la fatigue et de la rupture des matériaux et des structures sous charges.
La thermographie infrarouge proposée en analyse expérimentale offre une technique non destructive, sans contact, utilisable en temps réel et facile à mettre en œuvre pour vérifier des hypothèses de dimensionnement. Elle intéresse de nombreuses disciplines de l’ingénierie mécanique comme l’aéronautique, la biomécanique, les technologies biomédicales, l’ingénierie du sport, le génie civil, le génie parasismique, le génie automobile, l’innovation technologique, les matériaux et structures intelligents, la thermique du bâtiment, les technologies spatiales, etc.
Les applications des méthodes thermiques infrarouges ont fait l'objet de nombreuses publications au cours de ces dernières décennies grâce à une amélioration constante et sensible du matériel thermographique assisté par une micro-informatique toujours plus performante. Elles reposent sur les mécanismes de transfert thermique. De nombreuses recherches ont été effectuées pour caractériser divers métaux et différents matériaux non métalliques, soumis à la rupture, au contrôle non destructif, en vibrations, ou pour détecter la déformation plastique dans la propagation de fissure sous chargements monotones ou répétés sur des corps d’épreuve, ainsi que les mécanismes d'endommagement ou de fatigue qui précèdent la rupture.
Cette méthode d'auscultation est basée sur l'observation d'une cartographie thermique à la surface du spécimen scruté. La quantité d'énergie émise par rayonnement infrarouge dépend des effets thermiques, engendrés par le couplage thermomécanique et développés sous charge. L’utilisation des techniques numériques de traitement d’images thermiques permet une discrimination appropriée des phénomènes thermomécaniques à détecter et à analyser correctement dans un cadre théorique cohérent.
Les résultats obtenus mettent en valeur une technique thermographique infrarouge différentielle et montrent qu'une interprétation réaliste des phénomènes thermomécaniques détectés conduit à des applications novatrices et variées dans la conception, le dimensionnement, le contrôle de qualité et la performance mécanique des matériaux et des structures dans leur environnement particulier.