En réponse au contexte environnemental relatif à l’épuisement des réserves énergétiques fossiles, à l’accumulation de polluants anthropiques et à leur impact sur les changements globaux, le XXIe siècle s’oriente fortement vers le développement des biotechnologies visant à valoriser les organismes ou composés issus de ressources biologiques. La valorisation des ressources renouvelables d’origines biologiques, indépendamment de l’industrie pétrochimique est aujourd’hui largement démocratisée.
La découverte de micro-organismes extrêmophiles et leurs propriétés originales sont porteurs d’espoirs pour la recherche et les applications industrielles et biotechnologiques. Bien que les environnements dits extrêmes soient hostiles à la vie humaine, ils sont colonisés par des micro-organismes extrêmophiles adaptés. Plusieurs conditions extrêmes peuvent coexister et les micro-organismes sont alors poly-extrêmophiles. Les premiers extrêmophiles connus sont des halophiles ; organismes « qui aiment le sel ». Ils ont été découverts dans des environnements hypersalins. Les milieux hypersalins font partie des environnements extrêmes car les concentrations en sels sont supérieures à celles de l’eau de mer et peuvent parfois atteindre la saturation dans certains lacs, déserts ou bassins. Les environnements hypersalins sont nombreux sur la surface terrestre : mer morte, grand lac salé, Salar d’Uyumi, marais salants, bassins hypersalés sous-marins, …
Toute cellule vivante baigne dans une solution saline qui contient essentiellement du chlorure de sodium (NaCl) et une concentration équivalente en chlorure de potassium (KCl). Les fonctions vitales d’une cellule dépendent étroitement des concentrations en NaCl et KCl de part et d’autre de la membrane cellulaire. À faible concentration, le sel est indispensable au fonctionnement de la cellule. Pourtant aux fortes concentrations, le sel peut empêcher la vie puisqu’une différence importante de concentration en sels entre les milieux intérieur et extérieur provoque la sortie d’eau. Étonnamment, les milieux ultrasalins ne sont pas stériles. En effet, des communautés microbiennes dites halophiles prolifèrent dans les habitats où les sels (essentiellement du NaCl et MgCl2) ont été concentrés à la limite de leur solubilité (5 à 6 molaires), soit plus de dix fois la concentration dans l’eau de mer. Ces microbes sont la seule forme de vie possible dans les grands lacs salés ou dans les marais salants du littoral français. Or les micro-organismes halophiles sont une source de biomolécules aux fonctions, propriétés et structures variées et originales qui sont exploitées dans de nombreuses applications biotechnologiques et font pour la plupart partie de notre quotidien.
La biotechnologie industrielle s’est développée de manière substantielle lorsqu’il a fallu remplacer l’industrie chimique basée sur les produits du pétrole. Cependant les coûts de production de ressources biologiques telles que les bioplastiques, biofuels et les composés biochimiques restent extrêmement élevés par rapport aux mêmes produits d’origine chimique. Les matériaux de base ou substrats tel que le glucose issu de l’hydrolyse de l’amidon ont vu leur prix de production augmenter très rapidement. Les processus d’origine biologique nécessitent aussi beaucoup d’eau. Enfin, les processus de fermentation sont le plus souvent réalisés de manière discontinue afin d’éviter les risques de contaminantion microbienne qui engendrent un abaissement des taux de production.
Les micro-organismes halophiles montrent des propriétés métaboliques intéressantes en produisant des biomolécules de grande valeur ajoutée. Récemment, le développement d’outils génétiques et moléculaires facilite la production d’une large gamme de produits. Les halophiles sont une source d’enzymes stables qui fonctionnent à fortes salinités. La plupart des halophiles accumulent également de façon naturelle dans leurs cellules des polyhydroxyalcanoates (PHA), qui sont des plastiques biodégradables. Certains composés bioactifs sont utilisés comme antioxydant ; crème solaire et antibiotique. De nombreux exemples portent sur la synthèse de produits chimiques tels que ectoïne, hydroxy-ectoïnes, glycine et bétaïne comme agents stabilisants et de protection contre les stress cellulaires. Certains halophiles produisent également des biosurfactants et bioémulsifiants.
Les halophiles ont un grand nombre d’applications biotechnologiques potentielles et les espèces microbiennes halophiles représentatives sont des bons candidats pour la production de molécules d’intérêt biotechnologique en vue de leur utilisation dans l’industrie. Cet article résume les pistes de valorisation industrielle des modèles microbiens halophiles.