Article de référence | Réf : BIO1605 v1

Bioréacteurs à usage unique - Conception et principes

Auteur(s) : Maurice NONUS

Date de publication : 10 mai 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Bien adaptés au développement et aux productions biopharmaceutiques comme les anticorps monoclonaux, les cultures virales, les cultures de cellules de mammifères, d’insectes ou d’organismes recombinants, les bioréacteurs à usage unique ont trouvé naturellement leur place dans les laboratoires de recherche et les ateliers de production. Cet article a pour objectif de présenter l’innovation permanente qui accompagne leur développement. Les fournisseurs proposent des équipements qui contribuent à réduire les délais de développement et de mise sur le marché de molécules bioactives avec des gains de productivité, de belles perspectives de développement et une forte croissance de leur utilisation.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Single-use Bioreactors - Design and principles

Well-suited to biopharmaceutical development and production of, for example, monoclonal antibodies, viral cultures, or mammal, insect and recombinant organism cell cultures, single-use bioreactors are common in research laboratories and production plants. This article describes single-use bioreactors with continuous innovations associated with their development. Suppliers offer a wide range of equipment from research lab to production scale. Permanent need for innovation in biopharmaceuticals to reduce development time, market delivery and regular increase in process productivity offers opportunities for future production units with a good market growth.

Auteur(s)

  • Maurice NONUS : Docteur, ingénieur de recherche - Université de technologie de Compiègne, Département de génie des procédés industriels - Centre de recherche de Royallieu, Compiègne, France.

INTRODUCTION

Depuis les années quatre-vingt, les bioréacteurs à usage unique contribuent à la recherche et au développement des procédés biopharmaceutiques et biotechnologiques en quête d’innovations et de gains de productivité. Les équipements traditionnels en Inox demeurent la norme pour les productions à grande échelle, les équipements à usage unique « disposables » ou jetables ont pris une place prépondérante dans les laboratoires et les ateliers pilotes, les productions de lots d’essais cliniques voire de lots de production. Sans mise en place d’infrastructures lourdes, ils apportent souplesse et gain de temps dans la mise en œuvre, flexibilité, sécurité, diminution des contaminations croisées, les étapes de nettoyage désinfection-stérilisation sont supprimées, ce qui demande moins de capitaux pour l’initialisation de programmes afin d’en évaluer la faisabilité et le potentiel. Particulièrement bien adaptés pour les cultures de cellules animales (libres ou sur supports), vaccinales et d’organismes recombinants, ils correspondent à un besoin du marché soucieux de tester rapidement les innovations et la faisabilité des recherches. Les augmentations de capacités volumiques proposées par les fournisseurs en font naturellement des outils de choix pour les développements de procédé en pilote, les productions de lots d’essais cliniques voire de productions. Pour les bioréacteurs de laboratoire, les matériaux en résines rigides substituent verre et Inox des bioréacteurs réutilisables alors que les films souples multicouches restent la norme pour la fabrication des poches 2D et sacs 3D de plus grandes capacités. La nécessité de réduire les délais de développement et de mise sur le marché de molécules bioactives ainsi que les gains réguliers de productivité des procédés qui réduisent les volumes de production laissent entrevoir de belles perspectives de leur utilisation pour les années futures dans les ateliers mixtes et modulaires. Les cultures cellulaires animales, d’insectes, virales et de cellules recombinantes sont l’avenir des thérapies. Il est donc crucial de diminuer le temps de la mise sur le marché et les coûts. L’offre diversifiée d’équipements s’étoffe au fur à mesure des innovations des fournisseurs et permet de réaliser des volumes de culture du millilitre à 2 000 L. Les limitations actuelles de la tenue à la pression et à la résistance mécanique des matériaux n’ont pas limité le développement de ce marché qui progresse régulièrement dans les unités de production pour compléter voire remplacer les équipements en Inox des installations classiques de propagation des cultures. Le développement des usages des bioréacteurs à usage unique crée une dynamique d’innovation permanente associée à l’essor des nouvelles technologies de production des biomolécules actives. L’innovation dans la conception et la mise en forme de matériaux polymères biocompatibles souples et rigides pour des capacités atteignant de 2 000 L assure les fonctions élémentaires classiques d’agitation, de mélange et de contrôle des conditions physiologiques de croissance des cellules. Dans cet article nous décrivons les évolutions constantes des équipements de cultures à usage unique qui sont des outils essentiels au développement des procédés biopharmaceutiques.

Historique

Initialisée en milieu hospitalier, l’utilisation des équipements à usage unique est la norme depuis plus de quarante ans dans les laboratoires. Les matériaux plastiques biocompatibles peu coûteux ont permis de remplacer les matériaux traditionnels comme le verre plus fragile et dangereux pour l’expérimentateur ou les matériaux métalliques comme l’Inox plus onéreux. Ils permettent de limiter les risques de contamination, d’éviter les procédures fastidieuses de lavage, nettoyage et stérilisation et réduisent les coûts de transports par un moindre poids. Une très grande diversité de matériaux plastiques est disponible sur le marché, avec des propriétés physiques, des compatibilités chimiques et biologiques spécifiques qui permettent de couvrir une large gamme d’applications et la croissance de ce marché .

L’amélioration continue de la productivité volumique permet la diminution des volumes de production pour une même quantité produite (figure 1 et tableau 1).

L’ère du bioréacteur jetable à réellement pris son essor en 1998 avec la production industrielle des sacs jetables de cultures virales Wave (GE Healthcare) sur un concept imaginé par J.W Singh . Le dispositif est simple : un sac à usage unique stérilisé par irradiation est rempli de milieu de culture stérile, posé sur une plateforme oscillante, les différentes annexes permettent de perfuser, d’aérer et de placer les capteurs afin de suivre le déroulement de la culture (figure 2 c). Très bien adaptés pour les cultures à faibles besoins en oxygène, ces dispositifs sont dans un premier temps utilisés pour les cultures de cellules animales. La dynamique du marché permet aux fabricants de proposer des capacités volumiques croissantes où la cuve du fermenteur devient jetable pour des performances équivalentes.

Si de nombreux modèles de bioréacteurs à usage unique sont disponibles dans les laboratoires, le choix devient plus limité pour les étapes de pilote et de production.

Selon le mode d’agitation on distingue, du plus simple au plus complexe :

  • les erlenmeyers avec ou sans chicanes ou baffles ;

  • les flacons roulants ou roller-flasks (figure 2 a ) qui, placés sur de rouleaux d’entraînement, tournent sur eux-mêmes ;

  • les « spinner flasks » (figure 2 b) aux dispositifs d’agitation magnétique couplés ou non avec un agitateur interne de fond, barreau aimanté ou tige avec hélices pales fixées sur un axe vertical guidé par le bouchon de fermeture, les différentes ouvertures permettent d’y placer les capteurs, de réguler le pH et de faire des ajouts et prélèvements, et de réaliser des cultures de type batch, fed-batch, voire continues ;

  • les bioréacteurs à fibres creuses ;

  • les bioréacteurs de type sacs posés sur un plateau, une plate-forme oscillante ou à bascule (figure 2 d) ;

  • les fermenteurs à agitation continue jetables de type CSTR (Continuous Stirred Tank Reactor) apparus plus récemment sur le marché et similaires aux équipements classiques (2006) (figure 2 c).

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

Single use bioreactors   |   Biopharmaceutical productions   |   Cells cultivation

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bio1605


Cet article fait partie de l’offre

Bioprocédés et bioproductions

(159 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(159 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - EIBL (R.), LÖFFELHOLZ (C.), EIBL EIBL (D.), R and D -   Single-Use Bioreactors : An OverviewSingle-Use Technology in Biopharmaceutical Manufacture.  -  John Wiley & Sons, Inc., New York, 33-51 (2011).

  • (2) - DING (W.) -   Best practices in qualification of single-use systems.  -  Biopharm INTL, September 2015.

  • (3) - WEBER (A.) et coll -   Development and qualification of a scalable disposable bioreactor for GMP-compliant cell culture.  -  Bioprocess International, 1-11, 18.7.2015.

  • (4) - ANICETTI (V.) -      -  Biopharmaceutical processes : A glance into the 21st century. BioProcess International, Vol 7, 4-12 (2009).

  • (5) - RAO (G.) et coll -   Non-Invasive sensors as enablers of « smarts » disposables.  -  Bioprocess International, supplement, 24-36 (2009).

  • (6) - RADER...

1 Normes et standards

Normes de biocompatibilité

ISO 10993-5 : Biological Evaluation of Medical Devices – In Vitro Cytotoxicity

US Pharmacopeia <87>  : Biological Reactivity test, In Vitro

US Pharmacopeia <88>  : Biological Reactivity Test, In Vivo

European Medicines Agency A410_01 (rev2) or European Pharmacopoeia 5.2.8 : Minimizing the Risk of Transmitting Animal Spongiform Encephalopathy Agents Via Human and Veterinary Medicinal Products

Qualification du procédé de fabrication

ISO 9001 : 2015 Management de la qualité

ISO 13485 : 2016 Dispositifs médicaux – Systèmes de management de la qualité – Exigences à des fins réglementaires

21 CFR PART 82 Listing of certified Provisionally listed colors

Directives pour la caractérisation des films de bioréacteurs

ASTM D882, ISO 527-3 : Characterization of Tensile Properties

ASTM D1004, ASTM D1922, ISO 6383-1, ISO 6383-2 : Characterization of Tear Resistance

ASTM D3985 : Characterization of Oxygen Gas Transmission Rate Through Plastic Films

European Pharmacopoeia 3.1.5 : Characterization of Polyethylene with Additives for Containers

Directives de qualification physico-chimique

Carbone organique total

US Pharmacopeia <643>; European/US Pharmacopoeia Monograph for « Sterile Water for Injections » : Total Organic Carbon

Conductivité

US Pharmacopeia <645>; European/US Pharmacopoeia Monograph for « Sterile Water for Injections » :...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(159 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS