Logo ETI Quitter la lecture facile

En ce moment

Un revêtement nanocomposite ignifuge conçu à partir d’argile et de cellulose

Posté le par Arnaud Moign dans Matériaux, Biotech & chimie

Les nanotechnologies n’en finissent pas de faire parler d’elles. Un projet de recherche collaboratif piloté par la Texas A & M University a conduit à la création d’un revêtement retardateur de flamme élaboré à base de nanocellulose, d’argile et d’eau. Ce nouveau matériau pourrait s’avérer plus efficace que ceux existants actuellement tout en étant économique, écologique et non toxique.

Superposition de nanocouches organiques et minérales

Le matériau élaboré par l’équipe de chercheurs est constitué d’une superposition de couches nanométriques (136 nm). Il s’agit d’un assemblage de nanofibres de cellulose (cellulose nanofibrils, CNF en abrégé) et d’un minéral argileux, la vermiculite (VMT). Ces deux matériaux n’ont pas été choisis pour rien : dans la nature, la cellulose comme l’argile jouent le rôle de renforts mécaniques pour les structures dans lesquelles on les trouve.

Les propriétés étonnantes de la vermiculite

La vermiculite est un matériau naturel, bien connu pour ses propriétés d’isolation thermique et phonique. Il peut d’ailleurs être utilisé pour l’isolation des maisons et rentre dans la composition de nombreux matériaux utilisés en BTP : bétons allégés, chapes isolantes ou encore toitures-terrasses en vermiculite enrobée de bitume.

Le minerai de vermiculite naturelle est constitué de feuillets entre lesquels de l’eau est emprisonnée. Après traitement thermique entre 800 et 1000 degrés, les lamelles de vermiculite s’exfolient (s’écartent) pour donner naissance à un matériau ultraléger contenant une grande quantité d’air.

Procédé d’assemblage LbL « layer-by-layer »

Pour élaborer cet assemblage cellulose/vermiculite, l’équipe de chercheurs a employé un procédé de déposition basé sur le principe d’interaction électrostatique. Cette technique, appelée LbL pour « layer-by-layer » consiste à réaliser des séquences d’assemblage d’ions de charges opposées suivis de lavages successifs pour éliminer les produits en excès. Dans le cas présent, les nanofibres de cellulose jouent ainsi le rôle de cations et la vermiculite représente la partie anionique.

La combinaison de lamelles de vermiculite (VMT) fortement orientées et de nanofibres de cellulose conduit ainsi à la formation d’une structure ressemblant à un mur de nanobriques transparentes. Cette structure unique présente des propriétés extrêmement intéressantes : elle constitue d’une part une excellente barrière chimique à l’oxygène et présente d’autre part une résistance au feu jusqu’ici jamais atteinte sur des fibres de cellulose.

Les propriétés exceptionnelles de ce nouveau matériau

Pour tester les propriétés de ce matériau CNF/VMT, l’équipe dirigée par le Dr Jaime Grunlan l’a appliqué comme revêtement sur différents polymères. Dans un premier temps, c’est la perméabilité à l’oxygène qui a été mesurée sur des nanocouches de 136 nm, déposées sur des films de polyéthylène téréphtalate (PET) de 179 µm. Les résultats obtenus par l’équipe de chercheurs sont prometteurs, car ils indiquent une faible perméabilité à l’oxygène, de l’ordre de 4.06*10−21 cm3*cm (cm2*s*Pa)–1, des valeurs comparables aux barrières de type SiOX communément déposées sur des films polymères.

En ce qui concerne la résistance au feu, des revêtements de deux et quatre couches de CNF/VMT ont été appliqués sur des mousses polyuréthane flexibles, identiques à celles utilisées pour la confection des coussins de meubles. Les mousses ont ensuite été exposées au feu d’une torche au butane, sur chaque côté, pendant une durée de 10 secondes. Alors que la face non revêtue de la mousse fond immédiatement sous l’effet de la flamme, la face revêtue ne présente pas de traces de fusion, seulement des résidus de combustion de la flamme. Encore plus surprenant, d’après les observations au microscope électronique (MEB), la mousse polyuréthane semble garder sa structure originale, sans s’effondrer, même revêtue de couches d’une taille infime de l’ordre de 20 nm.

Cette structure qui ressemble à un mur de « nanobriques », en plus d’être un excellent retardateur de flamme, permet de réduire la quantité de fumée, un autre facteur d’alimentation des feux. Ce matériau semblant voué à un avenir certain, Jaime Grunlan souhaite à présent transférer sa méthode de fabrication vers l’industrie.

Pour aller plus loin

Posté le par Arnaud Moign


Réagissez à cet article

Commentaire sans connexion

Pour déposer un commentaire en mode invité (sans créer de compte ou sans vous connecter), c’est ici.

Captcha

Connectez-vous

Vous avez déjà un compte ? Connectez-vous et retrouvez plus tard tous vos commentaires dans votre espace personnel.

INSCRIVEZ-VOUS
AUX NEWSLETTERS GRATUITES !