Cet article présente la méthodologie globale pour évaluer la criticité des conséquences des défaillances d'un équipement d'un système complexe industriel.
Cette évaluation est d'une importance stratégique pour les dirigeants en leur fournissant une vision instantanée des performances de leurs entreprises pour mettre en œuvre ensuite des actions de progrès si cela s'avère nécessaire. La méthodologie préconisée dans cet article repose sur sept étapes principales.
La première étape insiste sur le besoin de définir les objectifs précis d'une étude de criticité qui doivent être validés et entérinés par les dirigeants de l'entreprise. En effet, ces évaluations de la criticité peuvent concerner des aspects économiques, stratégiques, financiers, réglementaires, techniques, organisationnels. Elles pourront servir à l'établissement d'indicateurs de performance et/ou à l'élaboration de tableaux de bord.
La deuxième étape propose une organisation du groupe de travail regroupant tous les acteurs indispensables pour mener à bien l'étude de criticité.
En fonction des objectifs définis dans la première étape, la troisième étape correspond à la définition précise du système, de ses équipements et de ses limites.
La quatrième étape décrit les principales méthodes d'analyse fonctionnelle. Ces méthodes sont indispensables pour réaliser des arborescences fonctionnelles et/ou matérielles d'un procédé industriel complexe. L'objectif de ces méthodes est d'aider à comprendre les raisonnements en visualisant le cheminement entre les causes et les différents effets des défaillances et à définir le niveau approprié du critère. Les méthodes FAST, SADT®, IDEF0 et Apte® feront l'objet de descriptions succinctes.
La cinquième étape propose une sélection des métriques et indicateurs de performances les plus appropriés aux objectifs recherchés. Les indicateurs d'impacts « lagging indicators » et les indicateurs d'activité « leading indicators » feront l'objet de descriptions spécifiques. Parmi le grand foisonnement de métriques et d'indicateurs de performance « clés », les échelles de cotation de la gravité et de la fréquence d'occurrence, les ordres de priorité de risque (RPN) et la courbe de Farmer seront exposés. Il sera fait également référence aux principales normes internationales définissant des indicateurs de criticité organisationnels, économiques et techniques.
La sixième étape fournit une typologie des données de fiabilité nécessaires à la construction des métriques de mesure de la criticité. Ces données étant par nature des variables aléatoires, seules des estimations statistiques sont possibles. Les méthodes d'estimation ponctuelles ou par intervalles sont décrites et les principes des estimations des lois de probabilité par les approches fréquentistes et bayésiennes y sont rappelés.
La septième étape établit un inventaire des banques internationales de données de fiabilité (MIL-HDBK-217F, OREDA, NSWC, Telcordia Issue 3, RIAC 217Plus, IEC TR 62380, FIDES, CHINA GJB/z 299B, Weibull Database Barringer) en mentionnant le degré d'obsolescence de certaines d'entre elles. Il y sera souligné que pratiquement toutes ces banques donnent des taux constants de défaillance suivant la loi exponentielle. La liste des autres banques sera mentionnée par souci d'exhaustivité. Dans la septième étape, les principaux outils pour évaluer la criticité des défaillances des équipements sont présentés en suivant pour chaque méthode la trame suivante : origine, principe, avantages et inconvénients. La première famille d'outils est consacrée aux méthodes qualitatives à base des jugements des experts quand les données de fiabilité ne sont pas disponibles (brainstrorming, Delphi, Abaque de Régnier®, méthodes PIEU et Méride, Méthode de la MBF (maintenance basée sur la fiabilité et le diagramme d'Ishikawa). La seconde famille est dédiée aux outils quantitatifs d'évaluation de la criticité en soulignant les métriques utilisées. Seront passés en revue : l'APR (analyse préliminaire des risques), l'AMDEC (analyse des modes de défaillance de leurs effets et de leur criticité), l'HAZOP (HAZard and OPerability study) utilisé pour l'analyse des risques industriels, What-If (Que se passe-t-il si ?), les arbres de défaillances, les blocs diagrammes de fiabilité.
Pour guider le lecteur sur le choix le plus adapté à leur problématique, une grille comparative des méthodes est ensuite proposée.
Dans l'éventualité où la criticité des défaillances s'avérerait inacceptable, on recense les méthodes les plus utilisées pour réduire leurs conséquences (barrières de sécurité, arbres d'événements, nœud papillon, méthode MOSAR, méthode LOPA (Layer Of Protection Analysis). En conclusion, des recommandations seront émises pour s'assurer que les résultats obtenus sont conformes aux objectifs recherchés et de nouvelles approches seront mises en perspective.